Minggu, 13 November 2016

TEKNOLOGI PENYIMPANAN ENERGI LISTRIK


Fasilitas penyimpanan energi merupakan salah satu cara dalam meningkatkan fleksibilitas sistem kelistrikan. Namun demikian, bagi negara-negara yang akan banyak menggunakan sumber energi terbarukan perlu memahami pilihan-pilihan teknologi penyimpanan energi listrik yang cukup bervariasi ini. Fasilitas penyimpanan energi listrik janganlah dipandang sebagai solusi tunggal dari semua permasalahan kelistrikan. Keberadaan teknologi ini harus disambut sebagai salah satu solusi untuk mendukung sektor kelistrikan yang bersih, handal, efisien, dan efektif biaya. Hal ini dalam rangka memfasilitasi penyebaran dan pengintegrasian sumber energi terbarukan pada jaringan listrik. Beberapa kondisi berikut dapat menjadi pertimbangan dan rujukan bagi upaya penggunaan teknologi penyimpanan energi listrik:
  1. Negara-negara dengan pangsa pemanfaatan energi terbarukan (terutama energi matahari dan angin) melebihi 30% pada total pemanfaatan energi, yang dipadukan dengan ambisi penggunaan energi terbarukan yang lebih besar lagi.
  2. Negara-negara dengan pangsa pemanfaatan energi terbarukan (terutama energi matahari dan angin) melebihi 20%, dengan kondisi infrastruktur jaringan listrik yang terbatas.
  3. Negara-negara kepulauan, atau negara yang memiliki banyak pulau dimana sistem kelistrikannya terpencil dan tidak terhubung dengan jaringan listrik umum (off-grid).
(IRENA, 2015a).

Fasilitas penyimpanan energi listrik terdiri dari sejumlah teknologi yang berada pada tahapan pengembangan yang bervariasi. Teknologi penyimpanan energi yang paling matang adalah teknologi pumped hydropower. Teknologi ini umumnya digunakan untuk periode charge dan discharge yang lebih lama (beberapa jam). Selama lebih sari satu abad, teknologi penyimpanan energi pada sektor kelistrikan telah didominasi oleh satu jenis teknologi, yaitu penyimpanan pumped hydropower. Pumped hydropower merepresentasikan mayoritas teknologi penyimpanan energi yang digunakan saat ini yakni sekitar 99%. (IEA, 2014b; dalam IRENA, 2015a). Teknologi pumped hydropower ini merupakan teknologi yang telah terbukti baik secara teknis maupun secara keekonomian di seluruh dunia.

Sebaliknya, teknologi penyimpanan energi dengan menggunakan batere merupakan pasar baru yang sedang berkembang. Contoh teknologi penyimpanan energi lain yang sedang berkembang adalah penyimpanan energi udara yang terkompresi, rodagaya (flywheel), listrik ke gas (power to gas), dan supercapacitor. (Fuch dkk, 2012; IRENA, 2012a; dalam IRENA, 2015a).

Energi listrik dapat juga disimpan dalam bentuk panas (thermal) dengan menggunakan boiler, pompa panas (heat pump), es atau air pendingin. Penyimpanan thermal dapat diintegrasikan dengan produksi combined heat and power (CHP) dan dimanfaatkan untuk memaksimalkan sumber daya energi angin. (Sorknaes dkk, 2013; dalam IRENA, 2015a). Pilihan-pilihan fasilitas penyimpanan energi thermal seringkali lebih murah daripada teknologi penyimpanan energi lain. Namun, terdapat kendala berupa sulitnya untuk mengubah kembali panas yang disimpan menjadi energi listrik. (IRENA, 2013b; dalam IRENA, 2015a). Secara khusus, energi listrik yang dikonversi menjadi media thermal digunakan pada waktu yang lain sebagai energi thermal, baik untuk pemanas ruangan, pendingin, atau untuk keperluan proses industri.

Dari perspektif teknologi, teknologi batere sangat mapan dan terdapat ratusan supplier yang menawarkan sistem batere yang handal. Namun demikian, terdapat sejumlah rintangan yang harus dipecahkan sebelum batere dapat diintegrasikan secara penuh sebagai pilihan utama di sektor kelistrikan. Rintangan ini meliputi isu kinerja dan keamanan (safety), halangan regulasi, dan penerimaan utilitas.

Pemanfaatan batere telah tersebar luas dalam menyokong pengintegrasian energi terbarukan dalam sistem kelistrikan, khususnya energi matahari (solar) dan energi angin. Kedua bentuk energi ini (angin dan matahari) dikenal sebagai variable renewable energy (VRA) karena produksi listrik dari kedua sumber energi ini cukup berfluktuasi (tidak stabil) tergantung pada kondisi cuaca dan iklim. Tren yang berkembang hingga sejauh ini adalah harga batere cenderung terus turun, sedangkan kinerja teknologinya semakin meningkat. Perkembangan teknologi batere terbaru mengindikasikan batere semakin lama semakin aman (safe) dan semakin efisien. Batere sekunder atau batere yang dapat di-charge ulang, menyimpan energi listrik secara kimiawi. Terdapat jenis batere sekunder temperatur rendah (lithioum-ion, lead-acid, nickel-cadmium), temperatur tinggi (sodium nickel chloride, sodium sulphur) atau redox flow (vanadium, zinc bromine). (Fuchs dkk, 2012; dalam IRENA, 2015).

Wilayah kepulauan menyimpan potensi untuk menjadi pasar utama teknologi batere. Teknologi mungkin diutilisasi untuk membantu mengintegrasikan energi terbarukan, mengurangi ketergantungan terhadap sumber pembangkit listrik dari energi fosil seperti diesel dan gas, dan pada beberapa kasus juga lebih murah. Kebanyakan pemanfaatan energi terbarukan untuk pembangkitan listrik memiliki biaya levelisasi (levelised cost) antara USD $ 0,05 – 0,25/kWh. (IRENA, 2013c; dalam IRENA, 2015a).

Penyimpanan batere di rumah tangga memungkinkan peningkatan konsumsi listrik secara mandiri dari teknologi solar PV. Batere juga dapat membantu menghilangkan keterbatasan kapasitas jaringan listrik lokal. Hal ini diselesaikan dengan penggunaan batere untuk menyesuaikan permintaan pengguna listrik dengan produksi listrik dari energi matahari. Beberapa sistem batere untuk rumah tangga, dijual dengan harga sekitar EUR € 1000/kWh berdasar data pada akhir 2014. Sumber lain menyatakan harga batere adalah sekitar EUR € 200/kWh dan lama pengembalian modal investasi (payback time) sekitar 6 – 8 tahun untuk negara-negara Eropa (Parkinson, 2014; dalam IRENA, 2015a).

Batere dapat ditempatkan pada lokasi pusat produksi listrik dari energi angin dan matahari agar dapat memperhalus output listrik yang dibangkitkan ketika ditransferkan ke jaringan listrik. Betere juga dapat menyimpan kelebihan produksi listrik dari energi terbarukan untuk digunakan pada waktu yang lain. Proses ini, sesuai digunakan pada periode-periode dimana permintaan listrik sedang tinggi.

Dukungan pemerintah telah menjadi kunci pendorong untuk pelaksanaan proyek demonstrasi batere di seluruh dunia. Hal ini juga telah membangun landasan yang produktif pada pengetahuan operasional, data, dan partisipasi aktif industri. Amerika Serikat, China, Jepang, dan Jerman merupakan pemimpin penggunaan batere. Negara-negara lain, termasuk Itali dan Korea Selatan, mengikuti cukup dekat di belakang. Telah jelas bahwa meningkatnya penggunaan variable renewable energy (VRA), seperti energi angin dan matahari, merupakan pendorong utama penggunaan batere secara masif dalam rangka peningkatan fleksibilitas sistem kelistrikan, memaksimalkan sumber daya energi terbarukan, dan mengembangkan teknologi alternatif. Kebijakan regulasi pada sejumlah negara telah mengenali keuntungan penggunaan aset-aset bahan bakar non fosil pada kestabilan jaringan listrik.

Sebelumnya, teknologi batere yang paling banyak mendominasi pasar adalah batere sodium-sulphur yang diproduksi oleh NGK Insulator di Jepang. Teknologi ini telah tergantikan dengan teknologi lithium-ion karena adanya keuntungan dari sisi biaya, kinerja, dan keamanan (safety) dibandingkan jenis batere lain. Pergantian ini didukung oleh insentif pemerintah dan pengaruh dari sektor lain. Untuk wilayah kepulauan, siklus kehidupan, kondisi ambien (khususnya temperatur), kebutuhan infrastruktur instalasi dan perawatan merupakan kriteria untuk pemilihan batere. Untuk solar PV rumah tangga, isu biaya, lahan yang dibutuhkan, keamanan, perawatan, dan jaminan akan menjadi faktor-faktor yang signifikan.

Referensi : Apriyanto, Alek Kurniawan. 2015. Membangun Energy Security Indonesia. Jakarta : Pustaka Muda.
Buku ini tersedia pada : https://www.tokopedia.com/bukuqu/membangun-energy-security-indonesia

Sabtu, 12 November 2016

JARINGAN LISTRIK PINTAR (SMART GRID)


Pertumbuhan dan ekspansi pemanfaatan energi terbarukan pada jaringan yang tersentralisasi dan yang terdesentralisasi membutuhkan pendekatan baru yang efektif terhadap manajemen jaringan listrik, yaitu melalui penggunaan secara menyeluruh sistem jaringan listrik pintar (smart grid) dan teknologinya. Sistem jaringan listrik yang ada sekarang telah banyak yang menggunakan elemen-elemen yang bekerja secara pintar, tetapi hal ini kebanyakan digunakan hanya sebatas pada kegiatan penyeimbangan pasokan (supply) dan permintaan (demand) listrik. Sistem jaringan listrik pintar memanfaatkan teknologi informasi dan komunikasi ke dalam setiap aspek pembangkitan, pendistribusian dan konsumi listrik untuk meminimalkan dampak lingkungan, meningkatkan pasar, meningkatkan kehandalan dan pelayanan, serta mengurangi biaya dan meningkatkan efisiensi. (EPRI, 2013; dalam IRENA, 2013).

Teknologi ini dapat diimplementasikan pada semua tingkatan, baik pada teknologi pembangkitan listrik hingga ke aplikasi konsumen. Sebagai hasilnya, smart grid dapat memainkan peranan krusial dalam transisi menuju energi masa depan yang berkelanjutan melalui beberapa cara : memfasilitasi integrasi sumber energi terbarukan (variable renewable energy) ke jaringan listrik dengan lancar, mendukung produksi listrik yang terdesentralisasi, menciptakan model bisnis baru melalui peningkatan arus informasi, keterlibatan konsumen, dan peningkatan sistem kontrol, dan menyediakan fleksibilitas di sisi permintaan (demand). (IRENA, 2013).

Energi terbarukan tingkat rendah dengan pangsa kapasitas yang masuk ke jaringan tidak melebihi 15%, umumnya layak dioperasikan tanpa menggunakan teknologi smart grid. Pada pemanfaatan energi terbarukan tingkat menengah, biasanya 15% - 30%, teknologi smart grid akan semakin dibutuhkan. Pada penetrasi kapasitas energi terbarukan melebihi 30% (tinggi) akan sangat membutuhkan teknologi smart grid untuk menjamin kehandalan operasional jaringan listrik. (IRENA, 2013).

Berdasarkan studi yang dilakukan di Timur Tengah dan Afrika Utara, diketahui bahwa investasi pengembangan smart grid dapat menghemat USD $ 300 juta hingga USD $ 1 miliar setiap tahun yang membantu kesadaran wilayah tersebut mengenai potensi pemanfaatan energi matahari yang mereka miliki. (Northeast Group, 2012, dalam IRENA, 2013). Studi di Amerika Serikat menemukan bahwa potensi investasi pada teknologi berkelanjutan termasuk smart grid dan energi terbarukan memiliki net present value (NPV) sebesar USD $ 20 miliar hingga USD $ 25 miliar berdasarkan keuntungan pemanfaatan teknologi tersebut. (Rudden and Rudden, 2012; dalam IRENA, 2013).

Kebanyakan proyek smart grid khususnya yang mendukung energi terbarukan, juga memberikan keuntungan sosial ekonomi tidak hanya bagi pemanfaatan sistem utilitas, tetapi juga bagi pelanggan dan komunitas lokal dan global. Keuntungan yang lebih luas ini termasuk pencapaian keuntungan ekonomi dari kehandalan sistem yang tinggi, peningkatan kesehatan publik karena pengurangan emisi, dan pencapaian jangka panjang di sisi lingkungan dan ekonomi dari listrik rendah karbon. (McGregor, 2012; dalam IRENA, 2013).

Referensi : Apriyanto, Alek Kurniawan. 2015. Membangun Energy Security Indonesia. Jakarta : Pustaka Muda.
Buku ini tersedia pada : https://www.tokopedia.com/bukuqu/membangun-energy-security-indonesia

Jumat, 11 November 2016

CO-FIRING BATUBARA DENGAN BIOMASSA


Salah satu teknik untuk mengurangi emisi dari pembangkit listrik batubara adalah dengan penambahan/modifikasi PLTU batubara menjadi sistem co-firing. Co-firing merupakan kegiatan pembakaran biomassa bersama-sama dengan bahan bakar fosil pada pembangkit listrik berbahan bakar batubara atau gas. (ETSAMP E01, E02, dalam IEA-ETSAP dan IRENA 2013). Saat ini terdapat sekitar 230 pabrik pembangkit listrik dan pabrik pembangkit combined heat & power (CHP) yang menggunakan sistem co-firing. Kebanyakan pabrik tersebut ada di Amerika Serikat dan Eropa bagian utara. Kapasitas masing-masing berkisar antara 50-700 MWe.

Terdapat 3 kelompok teknologi co-firing yakni : 1) direct co-firing, dimana digunakan ketel uap (boiler) tunggal dengan sistem pembakar (burner) umum atau (burner) terpisah. Teknologi ini merupakan yang paling murah dan paling banyak digunakan; 2) indirect co-firing, dimana sebuah gasifier mengubah biomassa padat menjadi fase gas; 3) parallel co-firing, dimana boiler yang terpisah digunakan untuk biomassa, kemudian uap air panas (steam) yang dihasilkan digabungkan dengan steam dari boiler konvensional yang menggunakan bahan bakar fosil.

Secara umum, efisiensi listrik dari sistem co-firing biomassa dengan batubara cukup bervariasi mulai dari 35% – 44%. (ETSAP, 2010b; IEA 2012, dalam IEA-ETSAP dan IRENA 2013). Sampai sejauh ini biasanya biomassa dicampurkan dalam sistem co-firing sebanyak sekitar 5% sampai 10%. Semakin tinggi komposisi biomassa berarti semakin rendah gas rumah kaca (green house gas – GHG) yang dihasilkan. Diperkirakan, dengan pemanfaatan sistem co-firing 1-10% biomassa pada setiap pembangkit listrik batubara di seluruh dunia akan dapat mengurangi emisi CO2 sebanyak 45 – 450 juta ton per tahun pada tahun 2035.

Biaya investasi untuk memodifikasi (retrofit) sebuah pembangkit listrik batubara menjadi sistem co-firing dengan biomassa adalah sekitar USD $ 430 – 500/kW untuk pabrik yang bahan bakunya dalam satu lokasi (co-feed plant), USD $ 760-900/kW untuk pabrik yang bahan bakunya terpisah (separate feed plant), dan USD $ 3.000 – 4.000/kW untuk sistem indirect co-firing.

Biaya operasi dan pemeliharaan dapat dikatakan mirip dengan pembangkit listrik batubara yakni sebesar USD $ 5-10/MWh karena co-firing akan meningkatkan biaya penanganan bahan bakar tetapi mengurangi biaya de-sulphurisation dan pembuangan abu pembakaran. (Mott McDonald 2011, dalam IEA-ETSAP dan IRENA 2013). Biaya operasi dan pemeliharaan umumnya adalah sekitar 2,5% – 3,5% dari biaya modal untuk sistem direct co-firing (IRENA 2012, dalam IEA-ETSAP dan IRENA 2013) dan sekitar 5% untuk indirect co-firing (ECN 2012b, dalam IEA-ETSAP dan IRENA 2013).

Biaya bahan bakar biomassa tergantung pada jenis, volume yang diperdagangkan, dan lokasi geografis. Biaya butiran biomassa (biomassa pellet) yang diperdagangkan secara global adalah sekitar Eur € 12/MWh, lebih tinggi daripada harga batubara. Studi IRENA terbaru menyajikan data mengenai harga biomassa yang tersedia secara lokal di Amerika Serikat, Eropa, Brasil, dan India. Harga biomassa ampas tebu di Brasil dan India adalah sekitar USD $ 0-11/MWh. Harga sampah agrikultural di Amerika Serikat dan Eropa berkisar antara USD $ 6-22/MWh. Proses pembuatan pellet biomassa merupakan cara untuk meningkatkan secara signifikan nilai panas (heat value) per volume biomassa. Selama 4 tahun terakhir harga biomassa pellet industri mengalami fluktuasi antara Euro € 24-30/MWh dimana harga ini sekitar Euro € 12/MWh lebih tinggi dibandingkan harga batubara. (Hawkins Wright, 2011, dalam IEA-ETSAP dan IRENA 2013).

Dengan mempertimbangkan harga batubara dan biomassa, co-firing secara umum lebih mahal dibandingkan pembangkit listrik batubara murni atau CHP batubara. Untuk meningkatkan keekonomian sistem co-firing beberapa cara dapat diterapkan di antaranya adalah pemberian insentif terhadap konversi pembangkit listrik biasa menjadi pembangkit dengan sistem CHP yang lebih efisien, penghapusan subsidi bahan bakar fosil, dukungan pemerintah pada penyediaan biomassa dan infrastruktur, serta mendedikasikan pendanaan terhadap riset dan pengembangan sistem co-firing. Pemerintah juga dapat menetapkan mandat penggunaan biomassa dengan sistem co-firing pada semua pembangkit listrik batubara, baik yang sedang beroperasi maupun yang akan dibangun. (IEA-ETSAP dan IRENA 2013).

Referensi : Apriyanto, Alek Kurniawan. 2015. Membangun Energy Security Indonesia. Jakarta : Pustaka Muda.
Buku ini tersedia pada : https://www.tokopedia.com/bukuqu/membangun-energy-security-indonesia