Rabu, 09 November 2016

DEFINISI ENERGI SECURITY




Organization of Petroleum Exporting Countries (OPEC) mendefinisikan energy security sebagaimana disampaikan oleh Sekretaris Umum OPEC, HE Abdallah Salem El-Badri, pada acara Chattam House Cenference, di London tahun 2008, yang berjudul “Middle East Energy 2008 - Risk and Responsibility: The New Realities of Energy Supply.” Beliau menyatakan bahwa energy security harus bersifat timbal balik. Energy security merupakan jalan dua arah. Keamanan permintaan merupakan hal yang penting bagi produsen energi sebagaimana keamanan pasokan bagi konsumen energi. Energy security seharusnya memiliki sifat-sifat sebagai berikut:
  1. Bersifat universal, diterapkan bagi negara kaya atau miskin secara setara, dengan fokus pada tiga pilar pengembangan berkelanjutan dan secara khusus menyangkut pemberantasan kemiskinan.
  2. Fokus pada penyediaan pelayanan energi modern bagi semua konsumen.
  3. Diaplikasikan pada seluruh rantai pasokan (supply chain). Sisi downstream sangat krusial seperti halnya upstream.
  4. Meliputi seluruh horizon waktu yang dapat diduga. Keamanan besok (masa depan) sangat penting selayaknya keamanan hari ini.
  5. Memperkenankan pengembangan dan penyebaran teknologi-teknologi baru melalui upaya berkelanjutan, berwawasan ekonomi dan lingkungan.
  6. Harus dapat memberikan manfaat dari peningkatan dialog dan kerjasama di antara para pemangku kepentingan.

The International Energy Agency (IEA) mendefinisikan energy security sebagai: Ketersediaan energi secara fisik secara terus menerus pada harga yang sanggup dicapai, serta memberikan perhatian terhadap aspek lingkungan. (www.iea.org)
IEA menyebutkan bahwa resiko-resiko energy security dapat dikategorikan sebagai berikut:
  1. Ketidakstabilan pasar energi yang disebabkan perubahan yang tak terduga dalam geopolitik atau faktor eksternal lainnya, atau sumber bahan bakar fosil yang terkonsentrasi.
  2. Kegagalan teknis seperti pemadaman listrik yang disebabkan gangguan pada jaringan dan pembangkit listrik.
  3. Gangguan keamanan fisik seperti terorisme, sabotase, pencurian dan pembajakan, serta bencana alam seperti gempa, badai, letusan gunung berapi, dampak perubahan iklim, dan lain-lain.
IEA menyebutkan terdapat faktor-faktor yang dapat berperan sebagai ancaman terhadap energy security, yaitu:
  1. Gangguan terhadap energy system yang disebabkan oleh kondisi cuaca ekstrem atau kecelakaan.
  2. Penyeimbangan jangka pendek (short-term) terhadap suplai dan permintaan di sektor kelistrikan.
  3. Kegagalan kebijakan.
  4. Konsentrasi sumber suplai energi fosil.
Energy system terdiri dari:
  1. Fuel Supply (pasokan/suplai bahan bakar).
  2. Energy transformation (transformasi energi).
  3. Energy Consumer (konsumen energi).
Selain itu, IEA membagi energy security ke dalam dua kelompok dimensi:
  1. Long term energy security, yaitu energy security yang berhubungan dengan investasi dalam jangka waktu tertentu untuk menyuplai energi yang sejalan dengan pertumbuhan ekonomi dan ketahanan lingkungan.
  2. Short term energy security, fokus pada kemampuan sistem energi dalam bereaksi secara cepat terhadap perubahan tiba-tiba pada keseimbangan supply-demand (pasokan-permintaan) energi.
Dengan demikian, keamanan pasokan energi merupakan perhatian utama IEA, dan hal ini selaras juga dengan yang didefinisikan European Union (EU) tetapi dengan beberapa perhatian tambahan terhadap isu lingkungan dan ketahanan. (Xavier Labandeira and Baltasar Manzano, 2012).

World Economic Forum (WEF) mendefinisikan energy security sebagai payung yang melindungi berbagai macam elemen-elemen yang berhubungan dengan energi, pertumbuhan ekonomi, dan kekuatan politik.

Sudut pandang terhadap energy security akan bervariasi tergantung posisi seseorang atau organisasi dalam rantai nilai energi (energy value chain). Konsumen dan industri pengguna energi menginginkan kesesuaian antara harga energi dengan permintaan, serta mengkhawatirkan gangguan terhadap suplai energi. Negara-negara penghasil minyak memandang energy security dari sisi keamanan pendapatan (revenue) dan keamanan permintaan pasar akan minyak sebagai bagian integral dalam setiap diskusi tentang energy security. Perusahaan minyak dan gas memandang akses kepada cadangan minyak dan gas, kemampuan untuk mengembangkan infrastruktur baru, dan kestabilan iklim investasi sebagai faktor-faktor yang sangat penting untuk menjamin energy security.

Negara-negara berkembang menempatkan perhatian mereka terhadap kemampuan masyarakat untuk membayar sumber daya energi pada harga yang terjangkau agar mampu menggerakkan roda perekonomian dan mengkhawatirkan keseimbangan goncangan pembayaran. Perusahaan-perusahaan pembangkit dan penyuplai listrik menempatkan perhatian kepada integritas seluruh jaringan listrik. Para pembuat kebijakan fokus kepada resiko gangguan suplai dan keamanan infrastruktur terhadap ancaman terorisme, perang, atau bencana alam. Mereka juga mempertimbangkan volume margin keamanan (jumlah kelebihan kapasitas, cadangan strategik, dan infrastruktur cadangan).

Di dalam rantai nilai energi (energy value chain), keanekaragaman harga dan suplai energi merupakan komponen yang sangat penting dalam energy security. Pada masa sebelumnya, minyak digunakan sebagai senjata sehingga kemudian timbullah perhatian bahwa gas alam dapat juga digunakan sebagai alat politik pada suatu waktu nanti. Dan ini terbukti dalam krisis Rusia dan Ukraina yang telah dipersepsikan secara umum sebagai konflik kepentingan terhadap gas alam.

Referensi : Apriyanto, Alek Kurniawan. 2015. Membangun Energy Security Indonesia. Jakarta : Pustaka Muda.
Buku ini tersedia pada : https://www.tokopedia.com/bukuqu/membangun-energy-security-indonesia

Selasa, 08 November 2016

BAHAN BAKAR GAS UNTUK TRANSPORTASI (LPG/Vi-Gas)


Bahan bakar jenis LPG (Liquid Petroleum Gas) juga dapat dikategorikan sebagai bahan bakar gas, namun LPG merupakan jenis gas yang berbeda dengan gas alam. Jenis gas utama penyusun LPG adalah propana (CH3) dan butana (CH4) yang biasanya merupakan hasil sampingan kilang minyak atau sisa fraksinasi gas alam. Propana dan butana, biasanya keduanya dicampur dalam komposisi tertentu.

Selain dikenal sebagai bahan bakar untuk konsumsi rumah tangga, LPG dapat digunakan juga sebagai bahan bakar pada kendaraan. Nilai oktan LPG untuk kendaraan diatur lebih tinggi dibandingkan LPG untuk rumah tangga. Di Indonesia bahan bakar LPG yang digunakan untuk transportasi dikenal dengan merek Vi-Gas. Secara global penamanaanya juga bermacam-macam sesuai dengan penamaan di masing-masing Negara. Bahan bakar LPG untuk kendaraan dikenal juga sebagai AutoGas, Automotive LP Gas, GLP (Gas Liquid Petroleum), GPL (Gas Petroleum Liquid), atau LGV (Liquid Gas for Vehicle).

LPG yang digunakan pada kendaraan ini berbentuk cair. Tekanan LPG diatur pada tekanan sekitar 8-14 bar dan temperatur sekitar -40 oC. Karena LPG untuk kendaraan diatur dalam bentuk cair maka daya tampung gasnya lebih besar dibandingkan CNG pada volume tabung yang sama.

Sistem pendistribusian LPG untuk kendaraan mirip dengan sistem pendistribusian BBM. LPG yang diproduksi dari kilang minyak atau sisa fraksinasi gas alam, disimpan di terminal penyimpanan LPG. LPG yang berbentuk cair ini dikirimkan ke SPBU dengan menggunakan truk tangki LPG. Di SPBU, LPG yang diangkut truk ditransferkan ke tangki LPG di SPBU. Kendaraan berbahan bakar LPG dapat mengisi LPG di SPBU-SPBU yang memiliki pelayanan Vigas.

Kendaraan Berbahan Bakar LPG

Menurut WLPGA, jumlah kendaraan berbahan bakar LPG secara global telah mencapai angka 24.991.465 unit pada tahun 2013. Sedangkan total konsumsi LPG untuk kendaraan secara global mencapai 25,8 juta ton. (www.auto-gas.net). Sistem mesin pembakaran dalam (internal combustion engine) yang bekerja dengan bahan bakar liquid petroleum gas (LPG) merupakan teknologi yang telah terbukti bekerja dengan baik layaknya mesin spark ignition pada kendaraan berbahan bakar bensin. LPG sebagai bahan bakar kendaraan tidak digunakan sendiri (single fuel) tetapi selalu berada dalam sistem bi-fuel. Kendaraan berbahan bakar bensin dapat ditambah sistem converter kit agar dapat menjadi kendaraan bi-fuel. Pada sistem ini, LPG dikombinasikan dengan bensin yang bekerja secara bergantian (sequential). Pada kendaraan bi-fuel terdapat dua sistem bahan bakar yang berarti terdapat dua tangki bahan bakar yang terpisah. Satu untuk bensin dan satu untuk LPG. Sistem bi-fuel memungkinkan LPG dan bensin dapat digunakan secara bergantian melalui switching cepat baik secara manual maupun otomatis. (IEA ETSAP, 2010).

Penggunaan LPG pada kendaraan dapat mengurangi emisi gas rumah kaca (green house gas – GHG) hingga 15% dibandingkan pada penggunaan bahan bakar petrol. Biaya konversi kendaraan bensin menjadi kendaraan bi-fuel LPG berkisar antara EUR € 1130 (15 juta-an rupiah) hingga EUR € 2740 (40 juta-an rupiah). (IEA ETSAP, 2010).


Grafik 3. Perkembangan jumlah kendaraan berbahan bakar LPG secara global dari tahun 2008 hingga 2013
Sumber : www.auto-gas.net

Grafik 4. Perkembangan konsumsi LPG untuk kendaraan berbahan bakar LPG secara global dari tahun 2008 hingga 2013
Sumber : www.auto-gas.net

Stasiun pengisain LPG untuk kendaraan (ViGas) di seluruh Indonesia terdapat sebanyak sekitar 21 unit SPBU yang melayani pengisian LPG (LGV filling station) per Juli 2015. Kebutuhan pasokan LPG untuk kendaraan juga kemungkinan akan bertambah seiring dengan pembagian 50.000 konverter kit LPG untuk perahu nelayan di beberapa wilayah pada tahun 2015.

Referensi : Apriyanto, Alek Kurniawan. 2015. Membangun Energy Security Indonesia. Jakarta : Pustaka Muda.
Buku ini tersedia pada : https://www.tokopedia.com/bukuqu/membangun-energy-security-indonesia

Senin, 07 November 2016

Teori Asal Usul Minyak Bumi



Terdapat perdebatan tentang teori asal usul minyak bumi. Secara umum teori-teori tersebut diklasifikasikan ke dalam dua kelompok:
  1. Teori pertama menyatakan bahwa minyak bumi berasal dari jasad renik lautan, tumbuhan dan hewan yang mati sekitar 150 juta tahun yang lalu. Sisa-sisa organisme tersebut mengendap di dasar lautan, kemudian ditutupi oleh lumpur. Lapisan lumpur tersebut lambat laun berubah menjadi batuan karena pengaruh tekanan lapisan di atasnya. Sementara itu, dengan meningkatnya tekanan dan temperatur, bakteri anaerob menguraikan sisa-sisa jasad renik tersebut dan mengubahnya menjadi minyak dan gas. Proses pembentukan minyak bumi dan gas ini memakan waktu jutaan tahun. Minyak dan gas yang terbentuk meresap dalam batuan yang berpori seperti air dalam batu karang. Minyak dan gas dapat juga bermigrasi dari suatu daerah ke daerah lain, kemudian terkosentrasi jika terhalang oleh lapisan yang kedap.
  2. Teori kedua yang cukup berkembang di antara para ilmuwan mengenai asal usul terjadinya minyak bumi adalah Teori Anorganik (Abiogenesis). Barthelot (1866) mengemukakan bahwa di dalam minyak bumi terdapat logam alkali. Pada saat logam ini berada dalam kondisi bebas dan temperatur tinggi dan kemudian bersentuhan dengan CO2 maka terbentuklah asitilena. Mandeleyev (1877) mengemukakan bahwa minyak bumi terbentuk akibat adanya pengaruh kerja uap pada karbida-karbida logam dalam bumi. Yang lebih ekstrim lagi adalah pernyataan beberapa ahli yang menyatakan bahwa minyak bumi mulai terbentuk sejak zaman prasejarah, bersamaan dengan proses terbentuknya bumi. Pernyataan tersebut berdasarkan fakta ditemukannya material hidrokarbon dalam beberapa batuan meteor dan di atmosfir beberapa planet lain.

Terlepas dari perdebatan tentang teori asal usul minyak bumi, manusia tetaplah membutuhkan usaha-usaha untuk dapat memanfaatkannya yang meliputi pengeboran, pengangkatan minyak dan pengolahan (refinery). Minyak bumi biasanya diangkat ke permukaan Bumi dalam bentuk emulsi minyak-air. Selanjutnya digunakan senyawa kimia khusus yang disebut demulsifier untuk memisahkan air dan minyak. Dari suatu proses eksplorasi pada sumur minyak bumi, maka sebagian besar akan dihasilkan minyak mentah (crude oil), dan terkadang ditemukan juga kandungan gas alam di dalamnya yang disebut gas alam bawaan (associated gas).